
Helix: Holistic Optimization for
Accelerating Iterative Machine Learning

Doris Xin, Stephen Macke, Litian Ma, Jialin Liu, Shuchen Song, Aditya Parameswaran
University of Illinois (UIUC)

More on Helix at the project website @https://helix-ml.github.io & in the technical report @https://arxiv.org/pdf/1812.05762.pdf

What is Helix?

❑ Accelerates iterative workflow development
▪ By removing redundant computation across
iterations. Up to 19x speed-up over 10 iterations.

❑ End-to-end machine learning system
▪ Handles specification and execution of ML
workflows encompassing all components.

Fast and user-friendly tool for accelerating
ML application development from scratch!

Iterative Execution Optimization

Speeding up Iterative Execution via Intermediates Reuse
❑ DAG Optimizer
▪ Detect changes
▪ Prune redundant operators
▪ Compute optimal reuse policies

Enabled by declarativity
+ operator DAG model

MinCut on operator DAG

❑ Mat. Optimizer

 Selectively materialize
 operator outputs to be
reused in future iterations
for speedup

Materialize-all can be prohibitive
Use streaming heuristic effective in practice

Intermediate
Code Gen.	

DAG	
Optimizer	

Materialization	
Optimizer	

Cumulative run time for four workflows: Census (classification on
structured data), Genomics (Clustering on word embeddings), NLP,
MNIST (Computer Vision).
In each iteration, an operator of type
 data preprocessing (DPR) → low reuse
 machine learning (L\I) → medium reuse
 post processing (PPR) → high reuse
is modified and the workflow is rerun.
KeystoneML: No materialization or reuse of intermediate results
DeepDive: Materialize all intermediates & manual reuse

Motivation
❑ Machine learning app. development is iterative
▪ Developers iteratively modify the workflow to
improve performance through trial-and-error,
changing data preproc., the mode, and post proc.

❑ Redundant computation across iterations
▪ Existing tools rerun the workflow end-to-end in
every iteration, regardless of the change
▪ Drain on resources and developer productivity

Declarative Programming Interface

Empirical Evaluation

Helix Opt. achieves the same reuse as
materialize-all (max reuse) with < 50% storage

Speed up, up to 19x, from mat. and reuse in all
four applications, including mat. overhead.

Run time breakdown by workflow component and
materialization time per iteration.

❑ Simple, intuitive, succinct DSL in Scala
▪ Imperative code directly embedded for UDFs
▪ Small number of composable and customizable
operators to handle most ML workflow operators
▪ Separate data structs. optimized for data prep. and ML

Concise code with high level operators amenable to quick iteration
Allows Helix to manage reuse at the desired level of granularity

Example workflow for predicting income from census data.

Fraction of states in Sp (pruned), Sl (load), Sc (compute) as
determined by Helix Opt. and Helix AM (mat. everything).

Cumulative run time and storage use against materialization
heuristics AM (mat. everything) and NM (mat. nothing).

